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Abstract

Marine phytoplankton is simultaneously affected by multiple environmental drivers. To-date integrative

assessments of multiple combined effects are rare on the relationship between elemental stoichiometry and

biochemicals in marine phytoplankton. We investigated responses of stoichiometric (N:C and P:C ratios) and

fatty acid-based (polyunsaturated fatty acid, PUFA) indicators of nutritional quality to three N:P supply ratios

(10:1, 24:1, and 63:1 mol mol21), three temperatures (12, 18, and 248C) and two pCO2 levels (560 and 2400

latm) in the marine phytoplankters Rhodomonas sp. and Phaeodactylum tricornutum. Overall, warming and

nutrient deficiency showed dramatic effects, but increased pCO2 had modest effects on the two indicators of

nutritional quality. Specifically, warming showed strong positive effects on N:C and P:C ratios in Rhodomonas

sp. but negative effects on PUFAs in both species. The low N- and low P-media led to low contents of both

nutrients but high contents of PUFAs in the biomass of Rhodomonas sp., while the response of P. tricornutum

was more complex: N:C ratios were lowest at the intermediate N:P supply but P:C ratios responded negatively

to P deficiency and positively to N deficiency. Large variations in the two indicators of nutritional quality

can be attributed to species-specific physiological optima and interactions between the three manipulated

variables. Our results suggest that stoichiometric and FA-based indicators of nutritional quality may change

differentially in response to warming and nutrient deficiency in marine phytoplankton, highlighting the rele-

vance of simultaneous considerations of the two indicators of nutritional quality, when assessing food web

dynamics under future ocean scenarios.

Ecological stoichiometry provides useful insights into the

functioning of ecosystems based on the balance of multiple

chemical substances in ecological interactions and processes

(Sterner and Elser, 2002). Stoichiometric analysis has long

been applied to chemical elements (Redfield, 1958; Hessen,

1997; Sterner and Elser, 2002; Galbraith and Martiny, 2015),

and it may also be applied to certain biochemicals according

to the extended stoichiometric hypothesis developed by

Anderson and Pond (2000). Similar to elements like N and P,

certain biochemicals, e.g., x3- and x6-polyunsaturated fatty

acids (PUFAs) are essential for animals, and thus they have

been used as indicators of nutritional quality of food (Hes-

sen, 2008; M€uller-Navarra, 2008). A concept incorporating

elemental stoichiometry and essential fatty acids (FAs) was

been developed in studies of herbivorous zooplankton

nutrition in limnology (Gulati and Demott, 1997; Boersma

et al., 2001; Ravet and Brett, 2006). However, systematic

studies are still lacking on the relations between elements

and FAs in marine phytoplankton and their importance for

zooplankton (Lampert, 2009). As evidence for climate

change on marine biota continues to accumulate (IPCC,

2014), insight into the responses of elemental ratios and bio-

chemicals in marine phytoplankton to changing environ-

ments is needed to predict the planktonic food web

dynamics in the oceans.

Multiple environmental factors will be concurrently

altered by climate change in the oceans (Boyd et al., 2015).

As one of the most critical problems of climate change, ris-

ing atmospheric CO2 will increase partial CO2 pressure

(pCO2) in the oceans [851–1370 latm by 2100 and 1371–

2900 latm by 2150 (RCP8.5 scenario of the IPCC report

2014)] (IPCC 2014). Parallel to the change of pCO2, rising

temperature and enhanced nutrient deficiency due to shal-

lower mixing depths will also impact much of the surface

ocean (Doney et al., 2012; Moore et al., 2013). For example,

*Correspondence: maxzhao@ouc.edu.cn

Additional Supporting Information may be found in the online version of this
article.

334

LIMNOLOGY
and

OCEANOGRAPHY Limnol. Oceanogr. 62, 2017, 334–347
VC 2016 Association for the Sciences of Limnology and Oceanography

doi: 10.1002/lno.10429



future warming will be superimposed on the strong present-

day seasonal and inter-annual temperature variability of the

source regions of the study strains: 23–218C during 1990–

1999 in the North Sea (Boersma et al., 2016) and �0–218C

during 1990–2014 in the Baltic Sea (http://www.helcom.fi/

baltic-sea-trends/environment-fact-sheets/; last accessed date:

12.05.2016), with an increased annual mean sea surface tem-

perature projected to reach 29.88C in 2100 across the North

Atlantic (0–608 N) (Lewandowska et al., 2014). Surface inor-

ganic N and P are the most limiting nutrients for primary

production in many areas of the oceans (Moore et al., 2013).

While a high anthropogenic inputs such as the high N:P

atmospheric deposition of �370 mol mol21 drives toward a

global scenario of an increase in the N:P ratio in the oceans

(Pe~nuelas et al., 2012), a low N:P ratio occurs in many

regions such as the N:P ratio of �6 mol mol21 in the center

of the South Pacific Gyre (Bonnet et al., 2008; Moore et al.,

2013). Although significant effort has been made to test the

effect of single environmental factor on elemental ratio and

FA composition of phytoplankton (Hutchins et al., 2009;

Toseland et al., 2013; Bi et al., 2014), it is still a major chal-

lenge to understand the combined effects of multiple envi-

ronmental drivers (MEDs) on chemical composition of

phytoplankton (Domis et al., 2014; Verspagen et al., 2014;

Cross et al., 2015).

Increasing attention is devoted to the interplay between

MEDs on phytoplankton under the projected climate change

scenarios (Xu et al., 2014a; Boyd et al., 2015; Flynn et al.,

2015). To date, studies have focused on two concurrent vari-

ables (Rhee and Gotham, 1981; Staehr and Sand-Jensen,

2006; Sommer et al., 2015), while a few have examined

three-way (Feng et al., 2008; Shi et al., 2015) or multi-way

interactive effects of environmental factors (Xu et al., 2014b;

Brennan and Collins, 2015). In most studies above, certain

traits of phytoplankton have been intensively investigated,

e.g., growth, photosynthesis, respiration, cell size and/or ele-

mental content. However, less work has been conducted to

simultaneously test stoichiometric and FA-based indicators

of nutritional quality, and their relationship in response to

the interactions of MEDs across different taxonomic groups.

In the present study, we focus on taxonomic comparisons

of phytoplankton C:N:P stoichiometric and PUFA responses

to N:P supply ratios, temperatures and pCO2, as well as the

relationship between the two properties of nutritional quali-

ty. We chose two marine phytoplankters as representatives

of common groups, the diatom Phaeodactylum tricornutum

and the cryptophyte Rhodomonas sp. The ecological rele-

vance of both phytoplankton groups are paramount, with

diatoms generating most of the organic matter that serves as

food in the seas (Armbrust, 2009), and cryptophytes being

amongst the most common, and possibly among the most

productive, flagellates in most aquatic environments

(Sommer, 1987; Klaveness, 1989; Ikavalko, 1998). P. tricornu-

tum and Rhodomonas sp. have long been used as model

species in different studies such as evolutionary history of

diatom genomes (Bowler et al., 2008), or unique photosyn-

thetic antenna proteins of cryptophytes (Collini et al., 2010),

and planktonic trophic dynamics (J�onasd�ottir, 1994; Mal-

zahn et al., 2007; Arndt and Sommer, 2014). Thus, studies

on model algal species would be the basis to derive general

findings for other algae and consumers. In this study, we

addressed the following questions: (i) How does the combi-

nation of N:P supply ratio changes, temperature rise and

increasing pCO2 affect stoichiometric (N:C and P:C biomass

ratios) and FA-based (PUFA contents) indicators of nutrition-

al quality? (ii) How do the two indicators of nutritional qual-

ity correlate with each other? (iii) Does the correlation

between the two indicators of nutritional quality vary with

the changing culture conditions?

Methods

Study organisms and culture conditions

The cryptophyte Rhodomonas sp. and the bacillariophyte

P. tricornutum (SAG, 1090-1b) were cultivated at a salinity of

37 psu in temperature-controlled rooms. The light intensity

was constant at 100 lmol photons � m22 � s21 at a light:dark

cycle of 16:8 h. The culture medium was prepared with ster-

ile filtered (0.2 lm pore size, SartobranVR P 300; Sartorius,

Goettingen, Germany) North Sea water and enrichment

nutrient solutions (macronutrients and micronutrients)

based on the modified Provasoli’s culture medium (Provasoli,

1963; Ismar et al., 2008). Macronutrients were added as sodi-

um nitrate (NaNO3) and potassium dihydrogen phosphate

(KH2PO4), and dissolved background concentrations were

negligible. For the diatom culture, also sodium silicate penta-

hydrate (Na2SiO3 � 5H2O) was added at a concentration of 88

lmol � L21. Initial pCO2 of the culture medium was manipu-

lated by bubbling with the target pCO2. Each culture was

kept in a sealed cell culture flask with 920 mL culture vol-

ume. All cultures were shaken manually twice per day at a

set time. Three replicates were set up for each treatment.

Experimental setup

First, batch culture experiments were performed for each

algal species under three N:P supply ratios, three tempera-

tures and two pCO2 levels. N:P supply ratios were manipulat-

ed as 10:1 mol mol21 (35.2 lmol � L21 N and 3.6 lmol � L21

P), 24:1 (88 lmol � L21 N and 3.6 lmol � L21 P) and 63:1 mol

mol21 (88 lmol � L21 N and 1.4 lmol � L21 P). Temperatures

were set to 12, 18 and 248C, and target values of the two

pCO2 levels were 560 and 2400 latm. The chosen levels of

N:P supply ratios, temperature and pCO2 cover the ranges of

typical changes of the three factors in natural conditions

and they are also in agreement with future ocean projections

(Pe~nuelas et al., 2012; Moore et al., 2013; IPCC, 2014; Lew-

andowska et al., 2014; Boersma et al., 2016). A temperature

range of 68C was set according to the ocean general circula-

tion model under the IPCC SRES A1F1 scenario
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(Lewandowska et al., 2014). The range of temperature also

covers the optimum growth temperatures for both algal spe-

cies (Hammer et al., 2002; Bojko et al., 2013). The observed

maximal growth rate (lmax) was estimated from cell number

changes during the exponential growth phase (Bi et al.,

2012).

Once batch cultures reached the early stationary phase,

semi-continuous cultures were started with the specific

growth rate (l, day21) of 20% of lmax for each treatment.

The equivalent daily renewal rate (D, day21) can be estimat-

ed by D 5 1 2 e2l�t, where t is renewal interval (day) (here

t 5 1day). The incubation water was exchanged with fresh fil-

tered seawater preacclimated to the desired pCO2 level and

CO2-enriched water. Renewal of the cultures was carried out

at the same hour every day. The steady state in semi-

continuous cultures was assessed based on the net growth

rate (r). When r was zero (at steady state), l was equivalent

to D.

Sample analysis

Algal cell density and pH were measured daily. For pH

measurements the electrode was calibrated daily using stan-

dard pH buffers (pH 4 and pH 7; WTW, Weilheim, Germa-

ny). At steady state, sampling was carried out during the

same hour as the daily renewal of the cultures to avoid the

effect of diel variations (Lacour et al., 2012) and subsequent

variability in the data. For each treatment replicate, one sam-

ple was taken for analysis (the size of samples 5 3 in each

treatment). All cultures were sampled for the following

parameters: cell density, dissolved inorganic carbon (DIC),

total alkalinity (TA), pH, particulate organic carbon, nitrogen

and phosphorus (POC, PON and POP), and FAs.

DIC sampling and measurement were conducted accord-

ing to Hansen et al. (2013). DIC samples were taken with a

peristaltic pump into 10-mL glass vials. The filtration was

conducted using a single-use syringe filter (0.2 lm, Minisart

RC25; Sartorius, Goettingen, Germany) which was connected

to the intake tube of the pump. Vials were immediately

sealed after filling. Subsequent analysis was carried out with

a gas chromatographic system (8610C; SRI-Instruments, CA).

TA samples were filtered through GF/F filters (Whatman

GmbH, Dassel, Germany) and analyzed with the Tirino plus

848 (Metrohm, Filderstadt, Germany). The remaining car-

bonate parameter pCO2 was calculated using CO2 SYS (Pier-

rot et al., 2006) and the constants supplied by Hansson

(1973) and Mehrbach et al. (1973) that were refitted by Dick-

son and Millero (1987) and the KSO4 dissociation constant

from Dickson (1990) (Supporting Information Table S1).

For elemental and FA analysis, algal cells were harvested

by filtration on pre-combusted and hydrochloric acid-treated

GF/F filters (Whatman GmbH, Dassel, Germany). After filtra-

tion, samples for elemental analysis were immediately dried

and stored in a desiccator, and samples for FA analysis were

frozen at 2808C. The determination of POC and PON was

carried out after Sharp (1974) by gas chromatography in an

organic elemental analyzer (Thermo Flash 2000; Thermo

Fisher Scientific, Schwerte, Germany). POP was analyzed col-

orimetrically by converting organic phosphorus compounds

to orthophosphate (Hansen and Koroleff, 1999). FAs were

measured as fatty acid methyl esters (FAMEs) using a gas

chromatograph (Trace GC-Ultra; Thermo Fisher Scientific,

Schwerte, Germany) according to the procedure described in

detail in Arndt and Sommer (2014). The FAME 19:0 was

added as internal standard and 21:0 added as esterification

control. The extracted FAs were dissolved with n-hexane to a

final volume of 100 lL. Sample aliquots (1 lL) were given

into the GC by splitless injection with hydrogen as the carri-

er gas. Individual FAs were integrated using Chromcard soft-

ware (Thermo Fisher Scientific, Schwerte, Germany) and

identified with reference to commercially available stand-

ards, Supelco 37 component FAME mixture and Supelco

Menhaden fish oil.

Statistics

Generalized linear mixed models (GLMMs) were used to

investigate the factors determining phytoplankton stoichio-

metric and FA composition. GLMMs combine the properties

of two statistical frameworks that are widely used in ecology

and evolution, linear mixed models and generalized linear

models (Bolker et al., 2009). They provide a more flexible

approach for analyzing non-normal data such as count or

proportion compared to classical statistical procedures

(Bolker et al., 2009) and have been increasingly applied in

ecology (Ye et al., 2013; Jamil et al., 2014). In this study,

C:N:P stoichiometric ratios (as mol mol21) and cellular con-

tents (as ng cell21 for C and N, and pg cell21 for P), and FA

contents (as lg mg21 C21) were considered as response varia-

bles, with N:P supply ratio, temperature and pCO2 as fixed

effects. Target distributions were tested and link functions

were consequently chosen. For all response variables, models

containing first order effects of the three factors, and second

and third order interactions of all factors were tested. Model

selection with the Akaike Information Criterion corrected

(AICc) was used to determine the model that best predicted

targets, with a lower AICc value representing a better fit of

the model. Following Bolker et al. (2009), changes of 10 U or

more in AICc values were considered as a reasonable

improvement in the fitting of GLMMs. In case AICc values

were comparable (<10 U difference), the simpler model was

thus chosen, unless there were significant second or third

order interactions detected. Differences in AICc values for all

responses of cellular C:N:P contents and ratios were <10

between different models, with an exception of N:C biomass

ratios in P. tricornutum, which showed around 11 points less

of AICc in the model containing second order interactions

than that only containing the first order effect (Supporting

Information Table S2). Differences in AICc values for TFAs,

SFAs and MUFAs in Rhodomonas sp., and PUFAs and EPA in
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P. tricornutum were less than 10 between different models;

however, those for PUFAs, ALA, EPA and DHA in Rhodomo-

nas sp. and TFAs, SFAs and MUFAs in P. tricornutum were up

to 50 points lower in the model containing only first order

effects than in those also containing second and third order

effects (Supporting Information Table S2).

lmax values did not differ substantially between different

N:P supply ratios in Rhodomonas sp. and P. tricornutum (Bi

et al., 2012). Thus, the effects of temperature and pCO2 on

lmax were tested for each algal species using two factorial

ANOVA. Dependent variables were checked for normality

using the Shapiro–Wilk test and transformed (square) if

required.

Linear regression analyses were used to test the relation-

ship between N (and P) cell quota (QN and QP, as

lg mg21 C21) and the contents of each FA group (TFAs,

SFAs, MUFAs, and PUFAs) under N (and P) deficiency (N:P

supply ratios 5 10:1 and 63:1). The same analysis was done

for the relationship between cellular FA and POC contents.

GLMMs, ANOVA and linear regressions were conducted

in SPSS 19.0 (IBM Corporation, NY). Significance level was

set to p<0.05 in all statistical tests.

Results

The observed maximal growth rate (lmax)

For both algal species, lmax did not significantly differ

between different temperature or pCO2 treatments. However,

the values of lmax in Rhodomonas sp. showed a trend to

increase with increasing temperature over the entire range of

N:P supply ratio and pCO2 (0.51 6 0.06 to 0.66 6 0.03 day21),

while those in P. tricornutum (0.84 6 0.02 to 0.87 6 0.07

day21) showed no detectable pattern.

N:C and P:C biomass ratios

The results of GLMMs showed that N:C biomass ratios

responded significantly to temperature changes in both algal

species (Table 1). Species-specific responses were also

observed, with a significant effect of N:P supply ratio and

the interaction between temperature and N:P supply ratio on

N:C biomass ratios in Rhodomonas sp., and a significant

effect of pCO2 and the interaction between temperature and

pCO2 on N:C biomass ratios in P. tricornutum (Table 1). Spe-

cifically, N:C biomass ratios in Rhodomonas sp. showed a pos-

itive response to increasing temperature under N deficiency

(N:P supply ratio 5 10:1) and the balanced nutrient condi-

tion (N:P supply ratio 5 24:1), but a negative response to

increasing temperature under P deficiency (N:P supply

ratio 5 63:1) (Table 2; Supporting Information Fig. S2a). In

contrast, N:C biomass ratios in P. tricornutum showed a trend

to decrease with increasing temperature under the low pCO2

condition, but a trend to increase under the high pCO2 con-

dition (Table 2; Supporting Information Fig. S3b).

Similar to N:C biomass ratios, P:C biomass ratios also

showed significant responses to temperature changes in both

algal species according to the GLMMs (Table 1). Species-

specific responses were found, with the significant interac-

tion between temperature and pCO2 on P:C biomass ratios

in Rhodomonas sp., and a significant effect of N:P supply

ratio and the interaction between temperature and N:P sup-

ply ratio on P:C biomass ratios in P. tricornutum (Table 1).

Specifically, P:C biomass ratios in Rhodomonas sp. were

higher at higher temperatures, but this positive response

became weaker as pCO2 increased (Table 2; Supporting Infor-

mation Fig. S3c). Despite the non-significant response to N:P

supply ratio, P:C biomass ratios in Rhodomonas sp. was

around two times higher under N-deficient and balanced

nutrient conditions than those under P deficiency (Table 2;

Supporting Information Fig. S2b). In contrast to the

responses to temperature rise in Rhodomonas sp., P:C biomass

ratios in P. tricornutum were higher at the lowest temperature

under N-deficient and balanced nutrient conditions (Table 2;

Supporting Information Fig. S2b). Moreover, P:C biomass

ratios in P. tricornutum decreased significantly with increas-

ing N:P supply ratio, being around two to three times higher

under N deficiency than under P deficiency.

Polyunsaturated fatty acids

GLMM results showed that the contents of PUFAs

responded significantly to N:P supply ratio in both algal spe-

cies, and PUFAs in P. tricornutum also responded significantly

to the interaction between temperature and N:P supply ratio

(Table 1). The contents of PUFAs in Rhodomonas sp. were

markedly higher under N and P deficiency; however, PUFAs

in P. tricornutum were slightly higher under P deficiency and

lower temperatures (Table 2; Supporting Information Fig.

S4d). Moreover, responses of PUFAs to increasing tempera-

ture in Rhodomonas sp. shifted from positive, negative to

unimodal as N:P supply ratio increased, although the effects

of temperature were not statistically significant.

Because of their high abundance and nutritional values,

ALA (a-linolenic acid; 18:3n-3), EPA (eicosapentaenoic acid;

20:5n-3) and DHA (docosahexaenoic acid; 22:6n-3) in Rhodo-

monas sp. and EPA in P. tricornutum were considered as the

most important single PUFAs. Significant responses were

observed for ALA and EPA to N:P supply ratio in Rhodomonas

sp., and DHA to temperature in Rhodomonas sp., but not for

EPA in P. tricornutum (Table 1; Supporting Information Table

S3). The contents of ALA in Rhodomonas sp. were markedly

higher under N and P deficiency. While ALA, EPA, and DHA

in Rhodomonas sp. showed a clear trend to decrease with

increasing temperature in most cases, the contents of EPA

increased with increasing temperature under N deficiency

(Supporting Information Fig. S5).

Correlations between QN (and QP) and polyunsaturated

fatty acids under N (and P) deficiency

Significant positive correlations were observed between

QN and PUFAs under N deficiency for both algal species (Fig.

1). However, there was no significant correlation between QP
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Table 1. Overview of the significant results of the best-fit GLMMs testing for the effects of temperature, N:P supply ratio and pCO2

on N:C and P:C biomass ratios, the contents of polyunsaturated fatty acids, and the contents of important single polyunsaturated fat-
ty acids in Rhodomonas sp. and Phaeodactylum tricornutum.

Response variable Factor Coefficient 6 SE t p n

Rhodomonas sp.

N:C biomass ratio (mol mol21) Intercept 22.924 6 0.254 211.497 <0.001 54

T 0.058 6 0.013 4.380 <0.001

pCO2 <0.001 6<0.001 20.494 0.624

N:P 0.016 6 0.005 3.042 0.004

T3pCO2 <0.001 6<0.001 20.537 0.594

T3N:P 20.001 6<0.001 24.014 <0.001

pCO23N:P <0.001 6<0.001 1.478 0.146

P:C biomass ratio (mmol mol21) Intercept 0.441 6 0.295 1.496 0.141 54

T 0.083 6 0.015 5.402 <0.001

pCO2 <0.001 6<0.001 1.466 0.149

N:P 20.007 6 0.006 21.143 0.259

T3pCO2 <0.001 6<0.001 22.111 0.040

T3N:P <0.001 6<0.001 21.299 0.200

pCO23N:P <0.001 6<0.001 20.351 0.727

PUFAs (lg mg21 C21) Intercept 153.82 6 24.031 6.401 <0.001 51

T 21.514 6 1.126 21.344 0.185

pCO2 <0.001 6 0.006 20.066 0.948

N:P 0.785 6 0.247 3.182 0.003

ALA (lg mg21 C21) Intercept 3.644 6 0.268 13.574 <0.001 51

T 20.011 6 0.013 20.875 0.368

pCO2 <0.001 6<0.001 0.246 0.807

N:P 0.006 6 0.003 2.192 0.033

EPA (lg mg21 C21) Intercept 36.584 6 4.355 8.401 <0.001 51

T 20.255 6 0.204 21.247 0.218

pCO2 20.001 6 0.001 20.837 0.407

N:P 20.117 6 0.045 22.610 0.012

DHA (lg mg21 C21) Intercept 17.056 6 1.312 12.999 <0.001 51

T 20.334 6 0.061 25.427 <0.001

pCO2 <0.001 6<0.001 20.780 0.439

N:P 0.009 6 0.013 0.657 0.514

Phaeodactylum tricornutum

N:C biomass ratio (mol mol21) Intercept 22.265 6 0.090 225.289 <0.001 53

T 20.018 6 0.005 23.738 0.001

pCO2 <0.001 6<0.001 25.665 <0.001

N:P 0.001 6 0.002 0.860 0.394

T3pCO2 <0.001 6<0.001 4.543 <0.001

T3N:P <0.001 6<0.001 1.492 0.142

pCO23N:P <0.001 6<0.001 0.445 0.659

P:C biomass ratio (mmol mol21) Intercept 1.992 6 0.212 9.412 <0.001 53

T 20.028 6 0.011 22.459 0.018

pCO2 <0.001 6<0.001 20.356 0.724

N:P 20.025 6 0.004 26.076 <0.001

T3pCO2 <0.001 6<0.001 0.422 0.675

T3N:P 0.001 6<0.001 2.812 0.007

pCO23N:P <0.001 6<0.001 20.578 0.566
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and PUFAs under P deficiency. The correlations between QN

and PUFAs were species-specific and temperature-dependent.

In Rhodomonas sp., QN correlated positively with PUFAs over

the entire range of temperature (Fig. 1a). In contrast, QN in

P. tricornutum showed no significant correlation with PUFAs

over the entire range of temperature, with a significant posi-

tive correlation observed when excluding data from the low-

est temperature (Fig. 1b).

Responses of both PON/PUFAs and POP/PUFAs ratios to

temperature and N:P supply ratio differed between the two

species, with those in Rhodomonas sp. being more responsive

than in P. tricornutum (Fig. 2). In Rhodomonas sp., PON/

PUFAs and POP/PUFAs were generally higher under the bal-

anced nutrient condition and the highest temperature (Fig.

2a,b). However, PON/PUFAs in P. tricornutum showed no

clear difference between different N:P supply ratio or temper-

ature treatments (Fig. 2c), and POP/PUFAs showed a trend to

decrease with increasing N:P supply ratio (Fig. 2d).

Discussion

Our results show complex and in many cases interactive

influences of temperature, N:P supply ratio and pCO2 on

stoichiometric and FA-based nutritional quality in marine

phytoplankton (Fig. 3 for a systematic summary). Overall,

warming and nutrient deficiency showed dramatic effects on

the nutritional quality of the two algal species, while

increased pCO2 had more modest effects, with significant

interactive effects observed between temperature and N:P

supply ratio (or pCO2). The relative importance of warming

and nutrient deficiency is in principle consistent with a

postulated ranking of environmental factors for five major

phytoplankton groups, which showed temperature, photo-

synthetic available radiation and nutrients (N and P) as the

most important factors for phytoplankton abundance (Boyd

et al. 2010). Specifically, we could observe differential shifts

between positive and negative correlations between stoichio-

metric and FA-based indicators of nutritional quality with

temperature. Our results thus highlight that one type of

nutritional quality indicator alone, either elemental or

biochemical can only incompletely reflect phytoplankton

quality for higher trophic levels in marine food webs.

Phytoplankton stoichiometric responses

Temperature showed the most consistent significant con-

tribution to the variation in elemental nutritional quality of

the two algal species in our study (Table 1), showing up to

83% changes in C:N:P stoichiometry in response to warming

(Fig. 3). These significant impacts of temperature on algal

stoichiometry in this study are in agreement with recent

results of field research, which demonstrate temperature as

the primary factor explaining variation in algal N:P and C:P

ratios on a global scale (Yvon-Durocher et al., 2015).

Although the global patterns of C:N:P ratios in ocean plank-

ton communities exhibit a strong latitudinal trend, i.e.

higher N:P and C:P ratios in warmer environments (Martiny

et al., 2013; Yvon-Durocher et al., 2015), taxonomic differ-

ences in responses of phytoplankton to warming were

observed in previous work (Thompson et al., 1992; Taucher

et al., 2015) and the present study (Fig. 3). Several mecha-

nisms are proposed to illustrate stoichiometric responses

to temperature. The temperature-dependent physiology

hypothesis predicts that organisms in warm environments

require fewer P-rich ribosomes, relative to N-rich proteins, to

sustain growth and maintenance (Thompson et al., 1992;

Woods et al., 2003; Yvon-Durocher et al., 2015). In line with

this hypothesis, we observed an overall decreased P:C bio-

mass ratios and increased N:C biomass ratios with increasing

temperature in P. tricornutum. In contrast, the growth rate

hypothesis (GRH) suggests that low C:P and N:P biomass

ratios in rapidly growing organisms reflect increased alloca-

tion to P-rich ribosomal RNA, as rapid protein synthesis by

ribosomes is required to support fast growth (Elser et al.,

2000). This positive linkage between P content and growth

rate can explain the overall increased N:C and P:C biomass

ratios and higher growth rates at higher temperatures in Rho-

domonas sp. The inconsistent predictions between the

temperature-dependent physiology hypothesis and the GRH

might be explained by calculations in a recent review (Cross

et al., 2015), which suggest that the increased P content

associated with rapid growth in warm conditions may be

TABLE 1. Continued

Response variable Factor Coefficient 6 SE t p n

PUFAs (lg mg21 C21) Intercept 4.420 6 0.100 44.408 <0.001 51

T 20.008 6 0.005 21.421 0.162

pCO2 <0.001 6<0.001 0.707 0.483

N:P 0.007 6 0.002 3.330 0.002

T3pCO2 <0.001 6<0.001 20.694 0.492

T3N:P <0.001 6<0.001 22.986 0.005

pCO23N:P <0.001 6<0.001 0.625 0.536

Significant p values are shown in bold; n is the number of observations. T: temperature; N:P: N:P supply ratio; PUFAs: polyunsaturated fatty acids;

ALA: a-linolenic acid (18:3n-3); EPA: eicosapentaenoic acid (20:5n-3); DHA: docosahexaenoic acid (22:6n-3).
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masked by larger decreases in P content due to other factors

such as patterns of nutrient condition and biodiversity

(Woods et al., 2003).

Indeed, we observed significant interactions between tem-

perature and N:P supply ratio (or pCO2), showing that N:P

supply ratio or pCO2 can change the extent or even reverse

the effect of temperature on N:C and P:C biomass ratios in

our two study taxa (Supporting Information Figs. S2 and S3).

Our results show that the effect of warming on stoichiomet-

ric responses was more pronounced under lower N:P supply

ratios, or under the low pCO2 condition in Rhodomonas sp.,

and under lower N:P supply ratios in P. tricornutum. Because

of the interactions between temperature and nutrients, the

influence of increasing global temperature on phytoplankton

growth showed seasonal changes in natural phytoplankton

communities in lakes (Frederiksborg Slotssø, Denmark)

(Staehr and Sand-Jensen, 2006). Our study suggests that

nutrient availability and pCO2 can alter the effect of warm-

ing on elemental quality of phytoplankton, which furthers

our understanding of MEDs influences on phytoplankton

stoichiometry.

Furthermore, stoichiometric responses to temperature,

N:P supply ratio and pCO2 differed between the two species

in our study (Fig. 3). For example, we observed up to 83%

enhancement of N:C biomass ratios in response to warming

in Rhodomonas sp., but a much less pronounced change

(�2%) in P. tricornutum. Our results are consistent with the

findings by Thompson et al. (1992) and Montagnes and

Franklin (2001), which showed stronger changes in stoichi-

ometry in the cryptophyte Rhodomonas salina but moderate

responses in P. tricornutum. These different responses may be

attributed to different adaptations to temperature (Mon-

tagnes and Franklin, 2001), nutrients (Bi et al., 2012), and

variable mechanisms regulating C acquisition (Giordano

et al., 2005; Wu et al., 2014) between the two species. The

expression of the CO2 concentrating mechanisms (CCMs)

has been well characterized in several algal groups such as

diatoms (Hopkinson et al., 2011; Raven et al., 2012), while

less is known about its mechanism in cryptophytes. Also,

environmental conditions can modulate the CCM activity

(Beardall and Giordano, 2002; Raven et al., 2012), but limit-

ed data are currently available on the interactions of multi-

ple factors. Therefore, additional research is needed to fully

assess the mechanisms and mathematical dynamics of the

interplay between temperature and nutrients (or pCO2) on

phytoplankton stoichiometry.

Phytoplankton polyunsaturated fatty acid responses

N and P deficiency had the most significant contribution

to the variation of PUFA contents in the two algal species in

this work (Table 1), showing up to 76% changes in PUFAs in

response to nutrient deficiency (Fig. 3). Although light inten-

sity and temperature are probably the most commonly

observed factors affecting FA composition of photosynthetic

Table 2. N:C and P:C biomass ratios and polyunsaturated fat-
ty acid contents (mean 6 SD) under three N:P supply ratios,
three temperature scenarios and two pCO2 levels in Rhodomonas
sp. and Phaeodactylum tricornutum.

Treatment

N:C biomass

ratio

(mol mol21)

P:C biomass

ratio

(mmol mol21)

PUFAs

(lg mg21 C21)

Rhodomonas sp.

N deficiency

LCO2, 128C 0.079 6 0.001 3.007 6 0.192 148.2 6 2.141

LCO2, 188C 0.115 6 0.009 5.671 6 0.273 174.6 6 6.402

LCO2, 248C 0.145 6 0.003 6.630 6 1.747 165.4 6 9.035

HCO2, 128C 0.072 6 0.001 3.302 6 0.363 146.9 6 1.037

HCO2, 188C 0.107 6 0.004 4.825 6 0.409 181.8 6 14.17

HCO2, 248C 0.126 6 0.002 5.889 6 0.241 172.9 6 10.97

Balanced nutrient condition

LCO2, 128C 0.158 6 0.005 3.680 6 0.132 127.8 6 6.511

LCO2, 188C 0.171 6 0.002 6.333 6 0.275 125.1 6 9.947

LCO2, 248C 0.210 6 0.024 8.765 6 1.121 66.43 6 11.03

HCO2, 128C 0.133 6 0.006 4.586 6 1.266 122.7 6 12.37

HCO2, 188C 0.138 6 0.003 3.480 6 1.266 112.4 6 13.91

HCO2, 248C 0.176 6 0.006 7.048 6 0.326 79.06 6 5.651

P deficiency

LCO2, 128C 0.122 6 0.002 2.146 6 0.342 190.8 6 6.952

LCO2, 188C 0.117 6 0.003 2.292 6 0.250 228.4 6 27.39

LCO2, 248C 0.120 6 0.010 3.820 6 0.267 154.2 6 14.45

HCO2, 128C 0.143 6 0.004 1.989 6 0.207 173.4 6 6.105

HCO2, 188C 0.117 6 0.001 2.164 6 0.176 195.8 6 6.843

HCO2, 248C 0.116 6 0.003 2.801 6 0.141 178.4 6 0.226

Phaeodactylum tricornutum

N deficiency

LCO2, 128C 0.081 6 0.005 5.344 6 0.145 84.39 6 9.188

LCO2, 188C 0.085 6 0.002 3.679 6 1.170 71.98 6 4.441

LCO2, 248C 0.067 6 0.002 3.889 6 0.115 67.31 6 2.032

HCO2, 128C 0.064 6 0.001 4.738 6 0.112 82.37 6 2.328

HCO2, 188C 0.078 6 0.002 4.094 6 0.307 71.64 6 1.861

HCO2, 248C 0.072 6 0.001 4.116 6 0.103 68.84 6 2.613

Balanced nutrient condition

LCO2, 128C 0.080 6 0.002 2.873 6 0.163 77.68 6 14.67

LCO2, 188C 0.078 6 0.001 2.411 6 0.102 77.19 6 1.568

LCO2, 248C 0.072 6 0.003 2.817 6 0.628 66.72 6 11.25

HCO2, 128C 0.065 6 0.001 2.843 6 0.384 83.09 6 8.866

HCO2, 188C 0.064 6 0.001 2.241 6 0.020 76.63 6 1.868

HCO2, 248C 0.071 6 0.007 2.429 6 0.244 71.96 6 3.437

P deficiency

LCO2, 128C 0.093 6 0.001 1.691 6 0.119 89.62 6 8.571

LCO2, 188C 0.098 6 0.001 1.807 6 0.023 82.00 6 1.215

LCO2, 248C 0.091 6 0.001 1.912 6 0.134 67.86 6 0.763

HCO2, 128C 0.083 6 0.001 1.680 6 0.041 103.3 6 2.057

HCO2, 188C 0.082 6 0.001 1.505 6 0.067 81.40 6 1.115

HCO2, 248C 0.094 6 0.001 1.929 6 0.249 70.96 6 10.98

N deficiency, N:P 5 10:1 mol mol21; Balanced nutrient condition, 24:1
mol mol21; P deficiency, 63:1 mol mol21. LCO2, 560 latm; HCO2,

2400 latm. PUFAs: polyunsaturated fatty acids.
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tissues or organisms, nutrient availability has also shown a

significant impact on FA composition of algae (Guschina

and Harwood, 2006). For example, the importance of nutri-

ent availability on FA composition was observed in meso-

cosm experiments conducted with natural phytoplankton

communities of marine, brackish and freshwater systems

(Brepohl, 2005). Our results provided additional evidence for

the importance of N:P supply ratio on PUFAs in two marine

phytoplankters (representing two algal groups). Furthermore,

the overall responses of PUFAs to nutrient deficiency showed

no consistent pattern between the two species, with more

than 58% enhancement in Rhodomonas sp. but less than 9%

changes in P. tricornutum (Fig. 3). Interspecific differences in

the responses of PUFAs to nutrient deficiency may be attrib-

uted to the association of PUFAs with different lipid types

such as triacylglycerols, phospholipids and phospholipids

substitutions (Bi et al., 2014). Moreover, nutrient levels seem

to influence the slope of the correlations between cellular

POC and FAs in Rhodomonas sp., showing higher slopes

under the balanced nutrient condition (Supporting Informa-

tion Fig. S6 a–d), suggesting that a larger part of C may be

fixed in non-FA molecules, e.g., carbohydrates, under nutri-

ent replete conditions.

Warming showed an overall negative effect on PUFAs in

both algal species in our study, resulting in <20% changes

in PUFAs (Fig. 3). This negative effect of warming on PUFAs

was also found in tropical Rhodomonas sp. and P. tricornutum

(Jiang and Gao, 2004) and another diatom Odontella aurita
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Fig. 1. Linear regressions between N cell quota (QN) and polyunsaturated fatty acids (PUFAs) under N deficiency for (a) Rhodomonas sp. and (b)

Phaeodactylum tricornutum. Solid lines: regressions over the entire range of temperature; broken lines: regressions at higher temperatures (18
and 248C).
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(Pasquet et al., 2014). Unsaturated FAs become higher to

maintain membrane fluidity, which is suggested to provide a

membrane of constant viscosity, i.e., homeoviscosity, at low

temperatures (Sinensky, 1974; Los et al., 2013). However,

positive and unimodal responses of PUFAs to warming were

also found in Rhodomonas sp. in our study (Table 2; Support-

ing Information Fig. S4d) and other algal species in previ-

ous work (Renaud et al., 1995; Piepho et al., 2012; Roleda

et al., 2013). For Rhodomonas sp. in this work, the lower

PUFAs at the lowest temperature under N deficiency was

due to the markedly decrease in EPA, while other major

PUFA components (ALA and DHA) showed only moderate

changes under the same condition (Supporting Informa-

tion Fig. S5). Our results suggest that nutrient deficiency

may influence temperature-dependent modification of FA

unsaturation in certain algal species, e.g., the inhibition of

N deficiency on elongation or desaturation of precursors to

produce EPA in Rhodomonas sp. at the lowest temperature.

Partial CO2 pressure showed a non-significant effect on

PUFAs in either species in our study (Table 1). This negligible

effect of pCO2 on phytoplankton FA composition was also

found in monocultures of other species from different phyla

such as Cyanobacteria, Bacillariophyta, and Rhodophyta

(Tsuzuki et al., 1990; Shi et al., 2015), and in a natural

plankton community (Leu et al., 2013). Under different

pCO2 levels, not only FAs but also other biochemicals such

as sterols and amino acids can be changed in phytoplankton

(Gordillo et al., 1998; Riebesell et al., 2000; Bermudez et al.,

2015). For example, cellular FA, protein or b21,3-glucan

contents in the diatom Thalassiosira pseudonana showed no

significant differences between two pCO2 levels; however,

the cellular b21,3-glucan content showed a larger variation

than FAs in response to pCO2 (Shi et al., 2015). We thus sug-

gest that other biochemicals, such as sterols (M€uller-Navarra,

2008), may be influenced by pCO2. Further research is rec-

ommended to explore the responses of variable biochemicals

to pCO2 and other factors.

Correlations between stoichiometric and FA-based

nutritional quality of phytoplankton and implications

for zooplankton nutrition

The results discussed above suggest that stoichiometric

and FA-based indicators of nutritional quality responded dif-

ferently under different combinations of environmental fac-

tors; therefore, both need to be studied if an integrative

assessment of nutritional value to higher trophic levels is

required. In the present study, we focus on the potential lim-

itation of elements and PUFAs on zooplankton nutrition

Fig. 3. The changes in stoichiometric (N:C and P:C biomass ratios) and fatty acid-based (polyunsaturated fatty acids, PUFAs) indicators of nutritional
quality in response to warming, N and P deficiency (-N and -P), and enriched pCO2 in Rhodomonas sp. and Phaeodactylum tricornutum based on the

data in Table 1 and Table 2. Here is shown not only significant and substantial effects on the two indicators of nutritional quality, but also moderate
and non-significant first order effects, some of these include significant two-factorial interactions. Significant interactions between temperature (T) and
N:P supply ratio (or pCO2) are presented based on GLMM results in Table 1, and corresponding response patterns are shown in Supporting Informa-

tion Fig. S2–S4. Red arrows indicate a mean percent increase, and blue arrows indicate a mean percent decrease in a given response.
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under nutrient deficiency, and thus the relationship between

QN (and QP) and PUFAs was tested under N (and P) deficien-

cy. We found that the correlations between QN and PUFAs

under N deficiency at higher temperatures (18 and 248C;

Fig. 1) are consistent with the findings by Bi et al. (2014),

which showed a positive correlation between QN and PUFAs

in P. tricornutum but a negative correlation in Rhodomonas

sp. under N deficiency at 188C. Moreover, we observed a

shift from negative to positive correlations between QN and

PUFAs in Rhodomonas sp., and a lack of significant correla-

tion between QN and PUFAs in P. tricornutum when data at

the lowest temperature (128C) were included. The correla-

tions between N (and P) content and PUFAs in phytoplank-

ton have been widely studied in freshwater environments

(M€uller-Navarra, 1995; Wacker and Von Elert, 2001; Glady-

shev et al., 2007), which helped to understand the relative

importance of the two properties of nutritional food quality

in regulating zooplankton nutrition (M€uller-Navarra, 1995;

Park et al., 2002). The present study shows species-specific

and temperature-dependent covariance of QN and PUFAs

(under N deficiency) in two marine phytoplankters, provid-

ing important empirical data to understanding of the

relations of elements and FAs in marine zooplankton

nutrition.

Interestingly, we also found that PON/PUFAs and POP/

PUFAs changed along the gradients of temperature and N:P

supply ratio (Fig. 2). According to the extended stoichiomet-

ric hypothesis, the ratio of N (or P) and essential PUFAs in

phytoplankton correlates negatively with the strength of

limitation of N (or P) relative to essential PUFAs in zooplank-

ton production (Anderson and Pond, 2000). Our results

therefore indicate that higher PON/PUFAs and POP/PUFAs

may lead to a lower probability of N (or P) limitation relative

to PUFAs for zooplankton feeding Rhodomonas sp. at the bal-

anced nutrient and high temperature conditions; and

decreased POP/PUFAs may lead to an increasing probability

of P limitation relative to PUFAs for zooplankton feeding P.

tricornutum as N:P supply ratio increased. However, it must

be noted that zooplankton production also depends on its

nutritional requirements (Anderson and Pond, 2000). It is

well known that the nutritional requirements of consumers

change with prey nutritional status and environmental fac-

tors by regulating behavior (e.g., ingestion process) or physi-

ological controls (e.g., metabolism) (Mitra and Flynn, 2005;

Sperfeld and Wacker, 2011; Acheampong et al., 2014). Clear-

ly, further work is required to incorporate elements and FAs

of both consumers and prey in studies of marine planktonic

trophic dynamics.

General conclusions

This study evaluated the variability of major element

ratios (N:C and P:C) and PUFA contents in response to

MEDs (N:P supply ratio, temperature and pCO2) in two

model species as representatives of common phytoplankton

groups. Overall, our results scaled the relative importance of

the three environmental factors, showing that warming and

N (and P) deficiency had the most pronounced effects on

elemental ratios and PUFAs, respectively. The effect trends of

the three factors on the nutritional quality of phytoplankton

are consistent with previous work, to some extent revealing

the general relevance of our findings for phytoplankton.

However, species-specific responses were also observed in our

study, suggesting that the implications of this study should

be tested with more phytoplankton species from different

groups in future studies. Moreover, significant interactions

between the three environmental factors suggest that the

effect of temperature can be modified by nutrient conditions

and pCO2. We also observed the covariance of QN and PUFAs

(under N deficiency) in both algal species, and the shifts of

PON/PUFAs and POP/PUFAs in dependence of temperature,

N:P supply ratio and algal species. This work thus provides a

useful basis for simultaneous inter-comparison of elements

and FAs in future studies on food web dynamics in the face

of climate change.
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